Министерство образования Магаданской области

Магаданское областное государственное автономное учреждение дополнительного образования «Детско-юношеский центр «Юность»

Мобильный технопарк «Кванториум»

Принята на заседании педагогического совета «<u>ОБ» илокя</u> 2020 г. Протокол № 2

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ (ОБЩЕРАЗВИВАЮЩАЯ) ПРОГРАММА ТЕХНИЧЕСКОЙ НАПРАВЛЕННОСТИ «Разработка приложений виртуальной и дополненной реальности»

Возраст обучающихся: 11-18 лет Срок реализации: 72 часа

Автор-составитель: Иванов Андрей Вячеславович, методист

Пояснительная записка

Дополнительная общеобразовательная (общеразвивающая) программа «Разработка приложений виртуальной и дополненной реальности» разработана в соответствии с нормативными правовыми документами:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
- Федеральный закон от 31 июля 2020 года № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации по вопросам воспитания обучающихся»;
- Указ Президента Российской Федерации от 1 декабря 2016 года №642
 «Стратегия научно-технологического развития Российской Федерации»;
- Распоряжение Правительства Российской Федерации от 29 мая 2015 года № 996-р «Стратегия развития воспитания в Российской Федерации на период до 2025 года»;
- Приказ министерства просвещения Российской Федерации от 09 ноября 2018 года № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказ министерства просвещения Российской Федерации от 30 сентября 2020 года № 533 «О внесении изменений в порядок организации и осуществлении образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом министерства просвещения Российской Федерации от 9 ноября 2018 г. №196»;
- Распоряжение министерства просвещения Российской Федерации от 17 декабря 2019 года № Р-134 «Об утверждении методических рекомендаций по созданию мобильных технопарков "Кванториум" для детей, проживающих в сельской местности и малых городах, в рамках региональных проектов, обеспечивающих достижение целей, показателей и результата федерального проекта "Успех каждого ребёнка" национального проекта "Образование" и признании утратившим силу распоряжения Минпросвещения России от 1 марта 2019 г. N Р-25 «Об утверждении методических рекомендаций по созданию и функционированию мобильных технопарков «Кванториум»;
- Методические рекомендации по проектированию дополнительных

общеразвивающих программ (письмо Министерства образования и науки Российской Федерации от 18 ноября 2015 года № 09-3242);

- «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» СП 2.4.4.3648-20 (Постановление Главного государственного санитарного врача РФ от 28 сентября 2020 г. № 28);
- Устав МОГАУ ДО «Детско-юношеский центр «Юность»;
- Положение о мобильном технопарке «Кванториум».

Дополнительная общеобразовательная (общеразвивающая) программа «Разработка приложений виртуальной и дополненной реальности» отвечает актуальным задачам государственной политики в сфере дополнительного образования детей, призвана создать благоприятные условия для развития технических способностей детей, интереса к изобретательству и инженерной деятельности.

Настоящая общеобразовательная (общеразвивающая) программа дополнительного образования детей «Разработка приложений виртуальной и дополненной реальности» имеет техническую направленность.

Уровень освоения программы: общекультурный.

Актуальность программы

Виртуальная и дополненная реальности — особые технологические направления, тесно связанные с другими. Эти технологии включены в список ключевых и оказывают существенное влияние на развитие рынков. Практически для каждой перспективной позиции будущего крайне полезны будут знания из области 3D-моделирования, основ программирования, компьютерного зрения и т. п.

Согласно многочисленным исследованиям, VR/AR-рынок развивается по экспоненте – соответственно, ему необходимы компетентные специалисты.

В ходе практических занятий по программе вводного модуля дети познакомятся с виртуальной, дополненной и смешанной реальностями, поймут их особенности и возможности, выявят возможные способы применения; а также определят наиболее интересные направления для дальнейшего углубления, параллельно развивая навыки дизайн-мышления, дизайн-анализа и способность создавать новое и востребованное.

Синергия методов и технологий, используемых в направлении «Разработка приложений виртуальной и дополненной реальности», даст ребенку уникальные метапредметные компетенции, которые будут полезны в сфере проектирования, моделирования объектов и процессов, разработки приложений и др.

Программа рассчитана для реализации на базе мобильного технопарка «Кванториум».

Мобильный технопарк «Кванториум» — это детский технопарк, созданный на базе перевозной автомобильной станции, оборудованный как многофункциональный комплекс, позволяющий проводить занятия с использованием высокотехнологичного оборудования с детьми и подростками по актуальным научно-исследовательским и инженернотехническим направлениям.

Новизна настоящей образовательной программы определяется формами и методами образовательной деятельности, а также формированием уникальной образовательной среды для развития технического мышления и изобретательской деятельности, приобретения практических навыков работы на оборудовании мобильного технопарка «Кванториум».

Педагогическая целесообразность настоящей программы заключается в том, что она является целостной и непрерывной в течение всего процесса обучения и позволяет обучающемуся шаг за шагом раскрывать в себе творческие возможности и самореализовываться в современном мире. Используемые формы и методы обучения позволяют вовлечь обучающихся в совместную деятельность при работе над кейсами и проектами (командообразование, понимание конечного результата во взаимодействии, обучение деловой коммуникации).

Отличительные особенности программы

Программа предполагает формирование у обучающихся представлений о тенденциях в развитии технической сферы.

Особенностью данной программы является её направленность на развитие обучающихся в проектной деятельности современными методиками ТРИЗ и SCRUM с помощью современных технологий и оборудования.

Учебно-воспитательный процесс направлен на формирование и развитие различных сторон личности обучающихся, связанных с реализацией как их собственных интересов, так и интересов окружающего мира. При этом гибкость программы позволяет вовлечь обучающихся с различными способностями. Большой объём проектных работ позволяет учесть интересы и особенности личности каждого обучающегося. Занятия основаны на личностно-ориентированных технологиях обучения, а также системнодеятельностном методе обучения.

Данная программа предполагает вариативный подход, так как в зависимости от интересов и индивидуальных особенностей обучающегося позволяет увеличить или уменьшить объём той или иной темы, в том числе и сложность, а также порядок проведения занятий.

Программа предполагает вариативную реализацию в зависимости от условий на площадке. В связи с регулярным передвижением мобильного технопарка «Кванториум» часть программы реализуется в очном формате с доступом к высокотехнологичному оборудованию. Наставник мобильного технопарка (педагог дополнительного образования) обучает работе на оборудовании, использованию программного обеспечения, руководит проектной деятельностью обучающихся.

Оставшаяся часть программы реализуется в дистанционном формате в форме дистанционного сопровождения, консультирования обучающихся.

Возраст обучающихся – 11-18 лет.

Наполняемость групп: до 15 человек, группы разновозрастные, состав постоянный.

Режим занятий: в очной форме в период пребывания мобильного технопарка «Кванториум» в течение учебного года согласно графику посещения агломерации; в заочной форме – согласно графику дистанционного сопровождения программ.

Условия приема на программу: без особых условий, по желанию обучающихся.

Цель программы: изучение принципов и разработка приложений дополненной и виртуальной реальности посредством вовлечения обучающихся в проектную деятельность.

Задачи:

обучающие:

- приобретение и углубление знаний основ проектирования и управления проектами;
- ознакомление с методами и приёмами сбора и анализа информации;
- обучение проведению исследований, презентаций и межпредметной позиционной коммуникации;
- обучение работе на специализированном оборудовании и в программных средах;
- знакомство с hard-компетенциями (разработка приложений, программирование и моделирование), позволяющими применять теоретические знания на практике в соответствии с современным уровнем развития технологий;

развивающие:

- формирование интереса к основам изобретательской деятельности;
- развитие творческих способностей и креативного мышления;
- приобретение опыта использования ТРИЗ при формировании собственных идей и решений;
- формирование понимания прямой и обратной связи проекта и среды его реализации, заложение основ социальной и экологической ответственности;
- развитие геопространственного мышления;
- развитие soft-компетенций, необходимых для успешной работы вне зависимости от выбранной профессии;

воспитательные:

- формирование проектного мировоззрения и творческого мышления;
- формирование мировоззрения по комплексной оценке окружающего мира, направленной на его позитивное изменение;

- воспитание собственной позиции по отношению к деятельности и умение сопоставлять её с другими позициями в конструктивном диалоге;
- воспитание культуры работы в команде.

Формы занятий:

- работа над решением кейсов;
- лабораторно-практические работы;
- лекции;
- мастер-классы;
- занятия-соревнования.

Методы обучения, используемые на занятиях:

- практические (упражнения, решение практических задач);
- словесные (рассказ, беседа, инструктаж, чтение справочной литературы);
- наглядные (демонстрация мультимедийных презентаций, фотографий);
- проблемный (метод проблемного изложения) обучающимся даётся часть готового знания;
- эвристический (частично-поисковый) обучающимся предоставляется большая возможность выбора вариантов;
- исследовательский обучающиеся сами открывают и исследуют знания.

Методы познания: конкретизация и абстрагирование, синтез и анализ, сравнение, обобщение, классификация, систематизация, индукция и дедукция.

Программа реализуется:

- в непрерывно-образовательной деятельности, совместной деятельности, осуществляемой в ходе режимных моментов, где обучающийся осваивает, закрепляет и апробирует полученные умения;
- в самостоятельной деятельности обучающихся, где каждый из них может выбрать деятельность по интересам, взаимодействовать со сверстниками на равноправных позициях, решать проблемные ситуации и др.

Требования к результатам освоения программы

Результаты освоения обучающимися данной программы должны соотноситься с ее целью и задачами.

Освоение содержания программы должно способствовать формированию у обучающихся универсальных и предметных компетенций. Универсальные компетенции (Soft Skills):

- умение слушать и задавать вопросы;
- навык решения изобретательских задач;
- свободное мышление;
- навыки проектирования;
- работа в команде;
- стратегическое мышление (на несколько шагов вперёд);
- осмысленное следование инструкциям, соблюдение правил;
- работа с взаимосвязанными параметрами;
- осознание своего уровня компетентности;
- ответственность;
- осознание своих возможностей;
- поиск оптимального решения;
- внимательность и аккуратность;
- соблюдение техники безопасности.

Предметные компетенции (Hard Skills)

Программные требования к знаниям (результаты теоретической подготовки):

- правила безопасной работы с электронно-вычислительными машинами и средствами для сбора пространственных данных;
- умение активировать запуск приложений виртуальной реальности,
 устанавливать их на устройство и тестировать;
- навыки калибровки межзрачкового расстояния;
- навыки дизайн-аналитики;
- умение анализировать процессы взаимодействия пользователя со средой;
- умение выявлять и фиксировать проблемные стороны существования человека в предметной среде;
- навыки дизайн-проектирования;
- умение формулировать задачу на проектирование исходя из выявленной проблемы;
- знание и умение пользоваться различными методы генерирования идей;

- работа с графическими редакторами;
- навыки прототипирования
- базовые навыки 3D моделирования, умение подготовить файл к печати на 3D принтере;
- знание и понимание основных понятий: дополненная реальность (в т.ч. ее отличия от виртуальной), смешанная реальность, оптический трекинг, маркерная и безмаркерная технологии, реперные точки;
- знание пользовательского интерфейса профильного ПО, базовых объектов инструментария;
- знание основ 3D моделирования;
- умение компилировать приложения дополненной реальности, устанавливать их на мобильные устройства и тестировать, выгружать в общий доступ с аккаунта разработчика.

Программные требования к умениям и навыкам (результаты практической подготовки):

- самостоятельно решать поставленную задачу, анализируя и подбирая материалы и средства для её решения;
- навыки создания AR (Augmented Reality = дополненная реальность) приложений;
- моделировать 3D-объекты;
- навыки создания VR (Virtuality Reality = виртуальная реальность) приложений;
- защищать собственные проекты;
- навыки создания VR устройства.

В процессе изучения содержания программы обучающиеся познакомятся с различными устройствами, узнают, в каких областях применяется технологии виртуальной и дополненной реальности, какие задачи можно решать с помощью технологий, а также смогут сами применять их в своей повседневной жизни. Обучающиеся базово усвоят принцип создания приложений. Узнают, что необходимо для создания приложений и устройств. В рамках программы выберут проектное направление, научатся ставить задачи, исследовать проблематику, планировать ведение проекта и грамотно распределять роли внутри команды.

Обучающиеся смогут познакомиться с историей развития технологий виртуальной и дополненной реальности. Узнают о современных устройствах, смогут решить различные задачи с их помощью. Узнают также и об основном устройстве шлема виртуальной реальности. Обучающиеся узнают, как создаются приложения с применением технологий виртуальной и дополненной реальности. Как производится настройка устройств и запуск приложений.

Углубятся в технологию создания 3D-графики, самостоятельно создадут 3D-модели для решения различных задач.

Ознакомятся с различными устройствами прототипирования. Узнают общие принципы работы устройств, сферы их применения и продукты деятельности данных устройств. Обучающиеся научатся готовить 3D-модели для печати с помощью экспорта данных.

Обучающиеся изучат основы подготовки презентации, создадут её и подготовятся к представлению реализованного прототипа.

Система оценки достижения планируемых результатов освоения программы

Виды контроля:

- текущий контроль, проводимый во время занятий;
- промежуточный контроль, проводимый по завершении крупных тем, разделов;
- итоговый контроль, проводимый после завершения всей учебной программы.

Формы контроля:

- индивидуальный;
- групповой;
- фронтальный.

Методы проверки результатов:

- наблюдение за деятельностью обучающихся в процессе работы;
- игры;
- индивидуальные и коллективные творческие работы;
- беседы с обучающимися.

Формы подведения итогов:

- выполнение практических работ;
- защита проекта;
- дискуссия.

Для оценивания деятельности обучающихся используются инструменты само- и взаимооценки.

Основным методом текущего контроля является наблюдение.

Промежуточная аттестация проводится в форме выполнения практических работ, защиты проектов, дискуссий.

Итоговая аттестация проводится в мобильном технопарке «Кванториум» в форме защиты индивидуальных или групповых проектов.

Основные цели текущего, промежуточного и итогового контроля – определение уровня освоения содержания программы на том или ином этапе прохождения программы, определение эффективности оказанного педагогического воздействия.

Учебно-тематический план

№	Название раздела, темы	Количество часов		часов	Форма контроля
п/п		Теория	Практика	Всего	
Введение					
1.	Знакомство. Введение в образовательную программу, техника безопасности.	2		2	Опрос
Знан	сомство с базовым ПО				
2.	Тестирование оборудования, анализ принципов работы, постановка и проверка гипотез, сравнение функционала	1	2	3	Опрос
3.	Знакомство с базовым программным обеспечением: мастер-класс step by step		3	3	Опрос, наблюдение
4.	Знакомство с базовым программным обеспечением: разработка мини AR-проекта с использованием адаптированных готовых 3D моделей		3	3	Наблюдение
5.	Знакомство с базовым программным обеспечением: разработка мини AR-проекта с использованием адаптированных готовых 3D моделей. Презентация разработок.		3	3	Наблюдение, презентация результатов работы
Диза	Дизайн мышление и методы генерации идей				
	-	1			1.

6.	Дизайн-мышление. Разбор инструментов	2		2	Опрос
	изучения поведения пользователя				
7.	Обсуждение полученных результатов,	1	1	2	Опрос
	кластеризация проблем. Выбор				
	пользовательской проблемы, решаемой с				
	помощью VR/AR приложения.				
	Разделение на команды. Генерация идей.				
8.	Разработка сценария с учетом		1	1	Опрос
	пользовательских пожеланий. В течение				
	недели: презентация идеи пользователю,				
	сбор обратной связи.				
Обуч	нение работе в ПО				
9.	Обучение работе в программном	1	5	6	Опрос,
	обеспечении – получение необходимых				рефлексия
	компетенций под конкретную проектную				
	задачу				
10.	Гибкое управление проектами. Разделение	1		1	Опрос
10.	ролей в команде. Распределение задач	_			511p0 0
11.	Поиск и доработка готовых 3D моделей,	1	8	9	Анализ,
	разработка собственных. Интеграция в				тестирование
	среду разработки. Тестирование на				продукта
	оборудовании.				1 / 7
12.	Поиск и доработка готовых 3D моделей,		3	3	Тестирование
	разработка собственных. Интеграция в				продукта
	среду разработки. Пользовательское				1 / 5
	тестирование – сбор обратной связи.				
Рабо	та в профильном ПО				
13.	Работа в профильном ПО		10	10	Наблюдение,
					рефлексия
Разр	аботка собственного VR устройства				
14.	Эскизирование собственного VR		1	1	Наблюдение
	устройства				
15.	Сборка собственного VR устройства		4	4	Наблюдение,
					анализ
16.	Разработка 3D модели идеального		5	5	Наблюдение,
	устройства		<u> </u>		анализ
Подг	готовка к защите проекта.				
17.	Предзащита проекта. Доработка проекта.		8	8	Предзащита
	Подготовка к защите проекта.				проекта
Итог	·				
18.	Защита проектов: презентация идеи,		4	4	Презентация
	демонстрация функционала приложений,				продукта,
	ответы на вопросы. Командная рефлексия				анализ,
	ответы на вопросы. Командная рефлексия				рефлексия
19.	Ярмарка проектов		2	2	Анализ,
					рефлексия
	Итого	9	63	72	
		1		i	

Содержание программы

Введение (2 часа).

Знакомство. Введение в образовательную программу, техника безопасности.

Обучающиеся познакомятся с различными современными устройствами виртуальной и дополненной реальности, историей развития этих устройств. Научаться различать Виртуальную, дополненную и смешанною реальность. Узнают, в каких областях применяются технологии виртуальной и дополненной реальности, какие задачи они могут решать, а также как обучающиеся могут сами применять их в своей повседневной жизни.

Знакомство с базовым ПО (12 часов).

Обучающиеся познакомятся с профильным оборудованием, научатся различать различные устройства. Узнают границы применения различного оборудования. Научатся настраивать оборудование и запускать на нем различные приложения. Познакомятся с профильным программным обеспечением, необходимым для создания различных приложений. Узнают границы применения данного программного обеспечения, познакомятся с базовым интерфейсом.

Дизайн мышление и методы генерации идей (5 часов).

Обучающиеся познакомятся с понятиями дизайн мышления, пользовательский опыт, глубинное интервью и пр. Научатся определять проблемы пользователя, проводить исследование. Изучат способы генерации идей для решения проблем.

Обучающиеся попробуют на практике различные способы генерации идей. Разработают сценарий приложения с учетом требований пользователя.

Обучение работе в ПО (19 часов).

Обучающиеся познакомятся с необходимыми инструментами для создания приложений. Научатся создавать простейшие приложения для различных устройств.

Гибкое управление проектами: обучающиеся познакомятся с различными методами управления проектами, научатся распределять роли и задачи в команде.

3D графика, 3D моделирование: обучающиеся познакомятся с понятием 3D модель, научатся находить и использовать готовые 3D модели. Познакомятся с различными форматами 3D моделей. Познакомятся с различными 3D редакторами. Познакомятся с интерфейсом 3D редактора. Научатся создавать собственные 3D модели.

Работа в профильном ПО (10 часов).

Обучающиеся овладеют умениями и навыками работы с инструментами для создания приложений. Отработают навыки создания простейших приложений для различных устройств.

Разработка собственного VR устройства (10 часов).

Обучающиеся познакомятся с устройством простейшего VR шлема. Научатся определять межзрачковое расстояние, рассчитывать фокусное расстояние линз. Познакомятся с различными материалами для создания собственного устройства. Ознакомятся с устройствами прототипирования, узнают общие принципы работы устройств, а также когда они применяются и что с их помощью можно получить. Создадут собственное VR устройство.

Подготовка к защите проекта (8 часов).

Предзащита проекта: обучающиеся представят результаты работы перед одногруппниками, доработают проект в соответствии с замечаниями и пожеланиями. Подготовка к защите проекта.

Обучающиеся изучат основы подготовки презентации. Создадут презентации. Подготовятся к представлению созданного приложения.

Итоги (6 часов).

Защита проектов: представление разработанного приложения и созданного устройства. Командная рефлексия. Ярмарка проектов. Финальная рефлексия. Итоговая аттестация.

Материально-техническое обеспечение программы

Материально-техническое обеспечение (оборудование, расходные материалы на учебный год) дополнительной общеобразовательной (общеразвивающей) программы «Введение в основы алгоритмизации в средах визуального программирования и создание «умных» устройств» — согласно инфраструктурному листу, утвержденному федеральным оператором сети детских технопарков «Кванториум».

Критерии оценивания

Защита проекта на промежуточной и итоговой аттестации обучающихся осуществляется по критериям оценки проектных работ (Приложение 1).

Методическое обеспечение программы

Образовательный процесс в мобильном технопарке «Кванториум» организуется в очной и дистанционной формах.

Методы обучения и воспитания

Методы обучения: словесный, наглядный практический; объяснительно-иллюстративный, репродуктивный, частично-поисковый, исследовательский проблемный; игровой, дискуссионный, проектный, метод кейсов.

Методы воспитания: убеждение, поощрение, упражнение, стимулирование, мотивация, пример.

Формы организации образовательного процесса

Индивидуально-групповая — занятия педагог ведет уже не с одним учеником, а с целой группой разновозрастных детей, уровень подготовки которых может быть различным.

Групповая - работа в группах может обеспечить глубокое, осмысленное обучение. Преимущество групповой работы состоит в том, что в совместной работе можно справиться с более сложным заданием, развить навыки командной работы.

Формы организации учебного занятия:

- тренинг;
- кейс-стади;
- ролевая игра;
- креативные группы;
- работа в парах;
- обмен опытом;
- мозговой штурм;
- тематические обсуждения;
- презентация;
- мастер-класс;

- эксперимент;
- конференция.

Педагогические технологии

Виды педагогических технологий, используемых в рамках образовательной программы:

- технология группового обучения;
- технология коллективного взаимообучения;
- технология развивающего обучения;
- технология исследовательской деятельности;
- технология проектной деятельности;
- технология игровой деятельности.

Алгоритм учебного занятия

- 1. Организационный момент;
- 2. Объяснение задания: введение в проблему и обсуждение, изучение проблемы, определение тематики;
 - 3. Практическая часть занятия;
 - 4. Подведение итогов;
 - 5. Рефлексия.

Дидактические материалы

Видео- и аудиоматериалы, иллюстрации, таблицы, задания с проблемными вопросами, задания на развитие воображения и творчества, экспериментальные задания, памятки.

Источники информации

- 1. Шонесси, Адриан. Как стать дизайнером, не продав душу дьяволу / Адриан Шонесси. СПб. : Питер, 2010. 300 с.
- 2. Лидтка, Ж. Думай как дизайнер. Дизайн-мышление для менеджеров / Жанна Лидтка, Тим Огилви. М. : Манн, Иванов и Фербер, 2011. 280 с.
- 3. Джанда, Майкл. Сожги свое портфолио! То, чему не учат в дизайнерских школах. СПб. : Питер, 2013. 350 с.
- 4. Кливер, Фил. Чему вас не научат в дизайн-школе / Ф. Кливер. М. : РИПОЛ Классик, 2014. 225 с.
 - 5. http://holographica.space

- 6. http://bevirtual.ru
- 7. https://vrgeek.ru
- 8. https://habrahabr.ru/hub/virtualization/
- 9. https://geektimes.ru
- 10. http://www.virtualreality24.ru/
- 11. https://hi-news.ru/tag/virtualnaya-realnost
- 12. https://hi-news.ru/tag/dopolnennaya-realnost
- 13. http://www.rusoculus.ru/forums/
- 14. http://3d-vr.ru/
- 15. VRBE.ru
- 16. http://www.vrability.ru/
- 17. https://hightech.fm/
- 18. http://www.vrfavs.com/
- 19. http://designet.ru/
- 20. https://www.behance.net/
- 21. http://www.notcot.org/
- 22. http://mocoloco.com/
- 23. https://www.youtube.com/channel/UCOzx6PA0tgemJ11Ypd_1FTA
- 24. https://vimeo.com/idsketching
- 25. <a href="https://ru.pinterest.com/search/pins/?q=design%20sketching&rs=typed&term_meta[]=design%7Ctyped&term_meta[]=sketching%7Ctyped
 - 26. https://www.behance.net/gallery/1176939/Sketching-Marker-Rendering
- 27. Кузнецова, И.А. ВИАР Квантум тулкит. Ирина Кузнецова. М. : Фонд новых форм развития образования, 2017 –128 с.

Критерии оценки проектных работ (проектное решение, изготовленный продукт, прототип) обучающихся мобильного технопарка «Кванториум» по завершению дополнительной общеобразовательной (общеразвивающей) программы

№	Критерий	Показатель	Балл
1.	Целеполагание		
		сформулированы, проблема не	
		обозначена	
		2.Цель обозначена в общих чертах,	1
		задачи сформулированы не конкретно,	
		проблема не обозначена	
		3.Цель однозначна, задачи	2
		сформулированы конкретно, проблема	
		не актуальна: либо уже решена, либо	
		актуальность не аргументирована	
		4.Цель однозначна, задачи	3
		сформулированы конкретно, проблема	
		обозначена, актуальна; актуальность	
		проблемы аргументирована	
2.	Планирование работы,	1.Отсутствует план работы. Ресурсное	0
	ресурсное обеспечение	обеспечение проекта не определено.	
	проекта	Способы привлечения ресурсов в проект	
		не проработаны	
		2. Есть только одно из следующего:	1
		1) План работы, с описанием ключевых	
		этапов и промежуточных результатов,	
		отражающий реальный ход работ;	
		2) Описание использованных ресурсов;	
		3) Способы привлечения ресурсов в	
		проект	
		3. Есть только два из следующего:	2
		1) План работы, с описанием ключевых	
		этапов и промежуточных результатов,	
		отражающий реальный ход работ;	
		2) Описание использованных ресурсов;	
		3) Способы привлечения ресурсов в	
		проект	
		4.Есть: подробный план, описание	3
		использованных ресурсов и способов их	-
		привлечения для реализации проекта	
3.	Качество результата	1.Нет описания достигнутого результата.	0
٥.	ra reerbo pesymbrara	Нет подтверждений (фото, видео)	V
		полученного результата. Отсутствует	

		программа и методика испытаний. Не	
		приведены полученные в ходе	
		испытаний показатели назначения	
		2.Дано описание достигнутого	1
		результата. Есть видео и фото-	
		подтверждения работающего	
		образца/макета/модели. Отсутствует	
		программа и методика испытаний.	
		Испытания не проводились	
		3.Дано подробное описание	2
		достигнутого результата. Есть видео и	
		фото-подтверждения работающего	
		образца/макета/модели. Приведена	
		программа и методика испытаний.	
		Полученные в ходе испытаний	
		показатели назначения не в полной мере	
		соответствуют заявленным	
		4.Дано подробное описание	3
		достигнутого результата. Есть видео и	
		фото-подтверждения работающего	
		образца/макета/модели. Приведена	
		программа и методика испытаний.	
		Полученные в ходе испытаний	
		показатели назначения в полной мере	
		соответствуют заявленным	
4.	Самостоятельность	1.Участник не может описать ход работы	0
••	работы и уровень	над проектом, нет понимания личного	Ü
	командной работы	вклада и вклада других членов команды.	
	1 I	Низкий уровень осведомлённости в	
		профессиональной области.	
		2.Участник может описать ход работы	1
		над проектом, выделяет личный вклад в	•
		проект, но не может определить вклад	
		каждого члена команды.	
		Уровень осведомлённости в	
		профессиональной области, к которой	
		относится проект не достаточен для	
		дискуссии	
		3.Участник может описать ход работы	2
		над проектом, выделяет личный вклад в	2
		проект, но не может определить вклад в	
		каждого члена команды.	
		уровень осведомлённости в	
		профессиональной области, к которой	
		относится проект достаточен для	
		ДИСКУССИИ.	3
		4. Участник может описать ход работы	3
		над проектом, выделяет личный вклад в	

	1
проект и вклад каждого члена команды.	
Уровень осведомлённости в	
профессиональной области, к которой	
относится проект, достаточен для	
дискуссии.	

Для оценки качества проекта подсчитывается среднее значение сумм баллов, выставленных экспертами (не менее 3 экспертов).

Результат определяется следующими показателями:

- 4-5 баллов низкое,
- 6-8 баллов среднее,
- 9-12 баллов высокое.