МИНИСТЕРСТВО ОБРАЗОВАНИЯ МАГАДАНСКОЙ ОБЛАСТИ МАГАДАНСКОЕ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ДЕТСКО-ЮНОШЕСКИЙ ЦЕНТР «ЮНОСТЬ»

Принята на заседании

педагогического совета

« Id » worsoful

2020 г.

Протокол №

«Утверждаю»

Директор МОГАУДО

«Детско-юношеский дентр «Юность»

Милин Ю.А. Малькова

ld» истроб 2020 г

Приказ №99// от « Ду». 11 2020 г

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ (ОБЩЕРАЗВИВАЮЩАЯ) ПРОГРАММА

Технической направленности «ТЕХНОЛОГИИ ВИРТУАЛЬНОЙ И ДОПОЛНЕННОЙ РЕАЛЬНОСТИ: МОДЕЛИРОВАНИЕ, ТВОРЧЕСТВО, ВИЗУАЛИЗАЦИЯ»

Возраст обучающихся: 12 – 18

Срок реализации: 144 часа

Автор – составитель: Афанасьева Регина Михайловна, педагог дополнительного образования

Пояснительная записка

общеобразовательной Направленность лополнительной (общеразвивающей) программы дополнительного образования «Технологии реальности: моделирование, виртуальной дополненной творчество, Программа модифицированная, визуализация» техническая. основе программы методические материалы направления VR/AR для использования наставниками сети детских технопарков «Кванториум».

Программа разработана в соответствии с нормативными правовыми документами:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации».
- Федеральный закон от 31.07.2020 года № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации по вопросам воспитания обучающихся».
- Указ Президента Российской Федерации от 1 декабря 2016 г.№642
 «Стратегия научно-технологического развития Российской Федерации».
- Распоряжение Правительства Российской Федерации от 29 мая 2015 года
 № 996-р «Стратегия развития воспитания в Российской Федерации на период до 2025 года».
- Приказ Министерства просвещения Российской Федерации от 09 ноября 2018 года № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- Приказ Министерства Просвещения Российской Федерации от 30.09.2020
 г. 533 «О внесении изменений в порядок организации и осуществлении образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. №196».

- Распоряжение Министерства Просвещения Российской Федерации от 17.12.2019 г. № Р-139 «Об утверждении методических рекомендаций по созданию детских технопарков «Кванториум» в рамках региональных проектов, обеспечивающих достижение целей, показателей и результатов федерального проекта «Успех каждого ребенка» национального проекта «Образование» и признание утратившим силу распоряжение Министерства Просвещения Российской Федерации от 01 марта 2019 г.
 № Р-27 «Об утверждении методических рекомендаций по созданию и функционированию детских технопарков «Кванториум».
- Методические рекомендации по проектированию дополнительных общеразвивающих программ (письмо Министерства образования и науки Российской Федерации от 18 ноября 2015 года № 09-3242).
- «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» СП 2.4.4.3648-20 (Постановление Главного государственного санитарного врача РФ от 28.09.2020 №28).
- Устав МОГАУ ДО «ДЮЦ» «Юность».
- Положение о детском технопарке «Кванториум Магадан».

Актуальность программы

Новые федеральные образовательные стандарты ставят перед системой образования инновационную задачу: создать среду обучения, которая мотивирует обучающихся самостоятельно получать и обрабатывать полученную информацию, делиться ею. Для решения этой проблемы разработаны новые педагогические подходы и технологии, учитывающие изменения, происходящие в жизни, позволяющие раздвинуть границы учебной среды далеко за пределы школы, встретиться в виртуальной реальности в образовательных целях.

Проектная работа в образовании дает возможность уже сегодня применять технологии виртуальной реальности с целью выработки нового

формата общения ученика и наставника, а также расширения их общих интересов, мотивации обучения, формирования новых компетенций.

Виртуальная реальность способствует геймификации процесса обучения. Большая часть информации может быть предоставлена в игровой форме. А также закрепить материал, провести практические занятия и многое другое. Таким образом, материал становится наглядным, яснее и интереснее, чем еще больше привлекает обучающихся и повышает эффективность обучения.

Наблюдая за современными тенденциями, можно с уверенностью сказать, что со временем VR-оборудование становится более доступным. Одним из ключевых факторов распространения технологии станет увеличение доступного VR-контента. Не только для школ, но и для университетов и других учреждений. При этом использовать виртуальную реальность в образовании можно в любом возрасте.

Данная программа способствует развитию профессиональных навыков (hard-skills) и надпрофессиональных (soft-skills). Данные навыки пригодятся обучающимся в освоении востребованных уже в ближайшие десятилетия специальностей: архитектор медоборудования; проектировщик инфраструктуры «умного дома»; инженер производства малой авиации; тренер творческих состояний и другие.

Новизна настоящей образовательной программы определяется содержанием и структурой, формами и методами образовательной деятельности, а также формированием уникальной образовательной среды для развития технического и творческого мышления, изобретательской деятельности в VR/AR -квантуме, приобретения практических навыков работы на станках с ЧПУ, размещенных в Хайтеке, овладении аддитивными технологиями. Программа модульная, в ее составе два модуля: вводный и углубленный, каждый по 72 часа.

Педагогическая целесообразность настоящей программы заключается в том, чтобы вовлечь обучающихся в совместную деятельность при работе над

кейсами и проектами (командообразование, понимание конечного результата во взаимодействии, обучение деловой коммуникации).

Обучающиеся должны исследовать ситуацию, разобраться в сути проблем, предложить возможные решения и выбрать лучшее из них. Программа учитывает интересы обучающихся. Можно поучаствовать в создании AR-квестов (квестов с элементами дополненной реальности), виртуальных экскурсий по городу, образовательных приложений по тематике других квантумов.

Адресат программы. Данная образовательная программа разработана для работы с обучающимися от 12 до 18 лет (5-11 классы). Наполняемость групп 10-15 человек. Программа представляет обучающимся возможность участия в региональных, так и всероссийских и международных конкурсах. Возможно адаптировать программу для обучающихся с ограниченными возможностями здоровья.

Объем и срок освоения программы. Объем учебной нагрузки – 144 часа, в неделю – 2 занятия по 2 академических часа. Срок обучения – 36 недель.

 Φ орма обучения по программе — очная, (возможно также очно-заочно, дистанционно).

Особенности организации образовательного процесса.

Группы формируются разновозрастные (12-18 лет). Состав группы - постоянный.

Практические задания планируется выполнять как индивидуально и в парах, так и в малых группах. Занятия проводятся в виде бесед, семинаров, для наглядности учебного материала используются презентации, видеоролики, VR/AR приложения пр.

Занятия проводятся в кабинете VR/AR-квантума, оборудованном согласно «Санитарно-эпидемиологическим требованиям к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» СП 2.4.4.3648-20 (Постановление Главного государственного санитарного врача РФ от 28.09.2020 №28).

Режим занятий, периодичность и продолжительность занятий.

Режим занятий: 2 раза по 2 часа в неделю.

Продолжительность 1 занятия: 2 академических часа.

Структура двухчасового занятия:

- 40 минут рабочая часть;
- 15 минут перерыв (отдых);
- 40 минут рабочая часть.

Цели и задачи программы

Цель программы: формирование уникальных компетенций по работе с VR/AR технологиями и их применение в работе над проектами.

Задачи:

Личностные:

- сформировать осознанное уважительное отношение к другому человеку,
 освоить социальные нормы и правила;
- научить работать в команде;
- развить у детей техническое мышление, познавательную деятельность,
 творческую инициативу, самостоятельность;
- научить проявлять дисциплинированность, трудолюбие и ответственность за результаты своей деятельности.

Метапредметные:

- научить с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- обучить проявлять познавательную инициативу, планировать, анализировать и контролировать деятельность;
- организовать сотрудничество и совместную деятельность, работу индивидуально и в группе;
- научить сравнивать с эталоном результаты деятельности (чужой, своей).
- развить способность творчески решать технические задачи;

сформировать у обучающихся готовность к дальнейшему совершенствованию в данной области.

Предметные:

- научить технике безопасности при работе на занятиях виртуальной и дополненной реальности;
- погрузить участников в проектную деятельность для формирования навыков ведения проекта;
- на протяжении всех занятий формировать 4К компетенции (критическое мышление, креативное мышление, коммуникация, кооперация);
- познакомить с понятием виртуальной реальности, определить значимые для настоящего погружения факторы, сделать выводы по их сходствам и различиям, возможностям различных VR устройств;
- научить конструировать собственные модели устройств, в т.ч. используя технологии 3D сканирования и печати;
- научить снимать и монтировать собственное панорамное видео экспериментальным путем определить понятия дополненной и смешанной реальности, их отличия от виртуальной;
- выявить ключевые понятия оптического трекинга;
- дать основные навыки работы с одним из инструментариев дополненной реальности;
- научить создавать AR приложения нескольких уровней сложности под различные устройства.

Содержание программы

Учебный план вводного модуля программы «Технологии виртуальной и дополненной реальности: моделирование, творчество, визуализация»

		Кол	ичество		
<u>№</u> п/п	Название раздела	Теория	Практика	Всего	Форма контроля

1	Вводное занятие. Вводный инструктаж.	1	1	2	Фронтальный опрос
2	Знакомство с технологиями виртуальной реальности.	4	6	10	Фронтальный опрос
3	Технологии 3D-моделирования: элементы, обзор программного обеспечения.	2	4	6	Контрольное задание
4	Технологии 3D-сканирования	2	2	4	Контрольное задание
5	Изготовление съёмки 360. Круговая фото и видео съёмка.	4	6	10	Контрольное задание
6	Технология дополненной реальности.	4	6	10	Презентация проектов
7	Очки дополненной реальности: конструкция и особенности создания приложений под них.	4	6	10	Презентация проектов
8	Создание AR квеста. Работа в команде над проектом.	2	8	10	Презентация проекта
9	Создание мобильного приложения с дополненной или виртуальной реальностью по проблематике другого квантума	2	8	10	Презентация проектов
	ИТОГО:	25	47	72	

Содержание учебного плана вводного модуля

Вводное занятие. Вводный инструктаж (2 ч.)

Теория: (1 ч.) Знакомство с техникой безопасности в VR/AR-квантуме. История появления виртуальной реальности. VR и AR: отличия, технологии, перспективы развития.

Практика: (1 ч.) Дискуссия: зачем нам дополненная и виртуальная реальность?

Форма контроля: Фронтальный опрос (Приложение 1). Анализ и обсуждение видео. Коллективное обсуждение технологии виртуальной и дополненной реальности.

Знакомство с технологиями виртуальной реальности (10ч.)

Теория: (4 ч.) Что представляет собой VR устройство. Какие бывают VR устройства. Знакомство с принципами работы VR устройств. Оборудование и

программное обеспечение, которое используется в технологиях создания виртуальной реальности. Изучение основных понятий: анимация, текстурированные, скульптинг. Какие бывают сферы применения VR-технологий?

Практика: (6 ч.) Тестирование существующих VR-устройств, установка и запуск приложений, запуск выявление ключевых характеристик в ходе игры.

Работа по кейсу «О дивный новый мир» (Приложение 1).

Форма контроля: Фронтальный опрос (Приложение 1).

Технологии 3D-моделирования: элементы, обзор программного обеспечения (6ч.)

Теория: (2 ч.) Что такое 3D-моделирование? Изучение элементов 3D-моделирования: рендер, анимация, свет, текстуры, полигональность. Работа с программным обеспечением для 3D-моделирования.

Практика: (4 ч.) Просмотр видео по интерфейсу и специфике различных программ для 3D-моделирования. Просмотр видео по темам: анимация, скульптинг, рендер. Вводное знакомство с интерфейсами программ Blender, 3ds max, Cinema 4D, ScetchUp, Unity, Unreal Engine.

Работа по кейсу «Дешево и сердито» (Приложение 1).

Форма контроля: Контрольное задание (Приложение 1). Презентация готовых моделей.

Технологии 3D-сканирования (4ч.)

Теория: (2 ч.) Теория: 3D-сканирование: особенности технологии, перспективы, оборудование и программное обеспечение. Виды 3D-сканирования.

Практика: (2 ч.) Сканирование с помощью сканера RangeVision Spectrum. Сохранение и импорт в нужном формате файла. Использование отсканированного объекта его 3D-модели в проектах программы Blender.

Форма контроля: Контрольное задание (Приложение 1). Демонстрация сканированных моделей. Коллективное обсуждение результатов.

Изготовление съёмки 360. Круговая фото и видео съёмка (10 ч.)

Теория: (4 ч.) Съёмка 360: понятие, актуальность, сферы применения. Обзор оборудования для съёмки 360. Основные интернет-сервисы, использующие фото и видео 360. Возможности сервисов Google Просмотр улиц, Яндекс Панорама улиц, Youtube VR 360.

Практика: (6 ч.) Просмотр в очках виртуальной реальности на смартфоне видео и фото 360. Съёмка фото и видео 360 с помощью различных камер 360. Выгрузка отснятого материала в Интернет. Конвертация форматов фото и видео 360.

Работа по кейсу «Другая точка зрения» (Приложение 1).

Форма контроля: Контрольное задание (Приложение 1). Демонстрация панорамного видео.

Технология дополненной реальности (10 ч.)

Теория: (4 ч.) Дополненная реальность и ее сферы применения. Что такое AR устройство и принципы работы с ним. Демонстрация работы с тестовыми приложениями в системах AR: Microsoft Hololens, Magic Leap One, Epson Moverio.

Практика: (6 ч.) Тестирование AR-устройств, установка приложений, выявление ключевых характеристик в ходе игры. Тестирование: Microsoft Hololens, Magic Leap One, Epson Moverio. Запуск приложений дополненной реальности и тестирование их.

Работа по кейсу «Изобретая невозможное» (Приложение 1).

Форма контроля: Презентация готовых проектов.

Очки дополненной реальности: конструкция и особенности создания приложений под них (10 ч.)

Теория: (4 ч.) Конструкция очков дополненной реальности. Возможности для создания приложений дополненной реальности. Инструменты, которые позволяют создавать приложения дополненной реальности.

Практика: (6 ч.) Приложение для очков дополненной реальности. Просмотр видео урока по созданию простого приложения AR. Обсуждение возможностей для создания приложений.

Работа с кейсом «Будущее на носу» (Приложение 1).

Форма контроля: Презентация готовых проектов.

Создание AR квеста. Работа в команде над проектом (10 ч.)

Теория: (2 ч.) Презентация существующих на рынке образовательных приложений.

Практика: (8 ч.) Тестирование существующих AR приложений, обсуждение принципов работы технологии, определение наиболее интересных решений.

Работа с кейсом «Кванторианский квест» (Приложение 1).

Форма контроля: Презентация готовых проектов.

Создание мобильного приложения с дополненной или виртуальной реальностью по проблематике другого квантума (10 ч.)

Теория: (2 ч.) Презентация профессиональных симуляторов, которые помогают отрабатывать профессиональный навык.

Практика: (8 ч.) Работа с кейсом «Точка зрения? Теория заговора? Техническое задание!» (Приложение 1).

Форма контроля: Презентация готовых проектов.

Планируемые результаты освоения вводного модуля

В соответствии с целью и задачами по итогам освоения программы «Технологии виртуальной и дополненной реальности: моделирование, творчество, визуализация» обучающиеся будут:

Знать:

технику безопасности при работе на занятиях виртуальной и дополненной реальности;

- технологию виртуальной и дополненной реальности, сферы применения этих технологий;
- оборудование и программное обеспечение, которое используется для создания приложений виртуальной и дополненной реальности;
- тенденции развития технологий виртуальной и дополненной реальности.
- 3D-моделирование, с помощью какого программного обеспечения создаются 3D-модели;
- 3D-сканирование, форматы 3d-моделей.Уметь:
- использовать оборудование, с помощью которого человек погружается в виртуальную и дополненную реальность;
- снимать и монтировать собственное панорамное видео;
- работать в программном обеспечении и создавать собственные проекты;
- создать собственные продукты в технологии дополненной реальности.
 Владеть:
- теоретическими знаниями о виртуальной и дополненной реальностью;
- основами работы в программном обеспечении для создания виртуальной реальности;
- навыками конструирования собственных моделей устройств, в т.ч. используя технологии 3D сканирования и печати.

Учебный план углубленного модуля программы «Технологии виртуальной и дополненной реальности: моделирование, творчество, визуализация»

			чество)	
		часон	3		
№ п/п	Название раздела	Теория	Практика	Всего	Форма контроля

1	Вводное занятие. Введение в	1	1	2	Фронтальный
	образовательную программу				опрос
	углубленного модуля				
2	Основы работы в Photoshop	4	6	10	Контрольное
					задание
3	Моделирование в Blender. Работа с 3D	4	6	10	Контрольное
	моделями				задание
4	Программирование в среде Unity	8	10	18	Презентация
					проектов
5	Разработка в Unity приложения	10	22	32	Презентация
					проектов
	ИТОГО:	27	45	72	

Содержание учебного плана углубленного модуля

Вводное занятие. Введение в образовательную программу углубленного модуля. (2ч.)

Теория: (1 ч.) Техника безопасности. Появление технологии VR и AR. Возможности технологии виртуальной и дополненной реальности. Сферы использования и их перспективы развития.

Практика: (1 ч.) Работа в приложениях для шлема виртуальной реальности. Запуск приложений виртуальной реальности. Выявление оптических и графических особенностей. Интерактивное взаимодействие с виртуальным миром. Подготовка мини-презентации о понравившейся технологии и её программном и аппаратном обеспечении.

Работа по кейсу №1 (Приложение 1).

Форма контроля: Фронтальный опрос (Приложение 1).

Основы работы в Photoshop (10 ч.)

Теория: (4 ч.) Принципы работы с растровой графикой. Инструменты рисования, редактирования, эффектов.

Практика: (6 ч.) Создание текста, свободное рисование. Работа со слоями. Редактирование готовых изображений. Наложение эффектов. Сохранение в различные форматы. Импорт в Unity, создание спрайтов. Поиск

обучающих материалов по Photoshop. Создание текстуры с использованием эффектов фотошоп.

Работа по кейсу №2 (Приложение 1).

Форма контроля: Контрольное задание (Приложение 1).

Моделирование в Blender (10 ч.)

Теория (4 ч.) Базовые элементы 3-х мерных моделей. Оптимизация сетки объектов. Поиск обучающих материалов по моделированию. Составляющие удачного VR — приложения. Контент и способы его создания.

Практика: (6 ч.) Твердотельное моделирование в среде Blender на основе видео-уроков youtube. Основные концепции моделирования низкополигональных объектов. Запуск приложений виртуальной реальности. Выявление оптических и графических особенностей. Интерактивное взаимодействие с виртуальным миром. Самостоятельное изучение заданных видео-уроков youtube. Создание упрощенных 3d-моделей.

Работа по кейсу №3 (Приложение 1).

Форма контроля: Контрольное задание (Приложение 1).

Программирование в среде Unity (18ч.)

Теория: (8 ч.) Unity: основные понятия, элементы и основы программирования. Обучающие материалы Unity Learn «Create with code». Интеграция готовых ресурсов (ассетов). Программирование поведения объектов на языке С#. Управление игроком. Основные игровые процессы. Аудио- и видеоэффекты. Игровая механика. Интерфейс игры.

Практика: (10 ч.) Создание учебных проектов в Unity на основе готовых ресурсов (ассетов). Программирование управления персонажем. Физическая модель взаимодействия объектов в Unity. Добавление аудио- и видеоэффектов. Разработка пользовательского интерфейса. Расширение и доработка учебных проектов.

Работа по кейсу №4 (Приложение 1).

Форма контроля: Презентация проектов.

Разработка в Unity приложения. (32 ч.)

Теория: (10 ч.) Планирование проекта. Панорамная фотография 360 градусов. Варианты разработки в Unity. Составляющие удачного VR — приложения. Контент и способы его создания. Чем обусловлен эффект погружения? Пакет-дополнение Oculus в Unity для разработки приложения для шлема виртуальной реальности. Отличия от разработки обычных приложений.

Практика: (22 ч.) Фотографирование необходимых объектов. Моделирование, текстурирование в blender. Компоновка в Unity-среде. Разработка механики, сценария поведения, иинтерфейса. Презентация созданного приложения. Запуск приложений виртуальной реальности. Выявление оптических и графических особенностей. Интерактивное взаимодействие с виртуальным миром. Работа в команде, планирование проекта, решения проблем творческого и поискового характера. Создание фото-360.

Работа с контроллерами. Перемещение/телепорт в тестовой VR сцене. Создание интерфейса в VR сцене. Исследование готовой сцены «Спасение из комнаты». Дополнение проекта своими разработками — моделями, аудио- и видеоэффектами.

Принцип работы с системой Vuforia. Создание маркеров, импорт 3-х мерных объектов. Создание интерфейса в AR сцене. Компиляция приложения под Android-устройства. Дополнение проекта своими разработками – моделями, аудио- и видеоэффектами.

Работа по кейсам №5-7 (Приложение 1).

Форма контроля: Презентация проектов.

Планируемые результаты освоения углубленного модуля

В соответствии с целью и задачами по итогам освоения программы «Технологии виртуальной и дополненной реальности: моделирование, творчество, визуализация» обучающиеся будут:

Знать:

- языки программирования: C#, C++, Java, JavaScript (по выбору);
- 3D моделирование в Blender 3D/3DsMax;
- основы создания VR приложений;
- оборудование и программное обеспечение, которое используется для создания приложений виртуальной и дополненной реальности;
- тенденции развития технологий виртуальной и дополненной реальности.

Уметь:

- выбирать объект исследования;
- формулировать рабочую гипотезу;
- проверить рабочую гипотезу и оценить достоверность полученных результатов;
 - активировать запуск приложений виртуальной реальности
- работать в программном обеспечении и создавать собственные проекты;
 - создать собственные продукты в технологии дополненной реальности. Владеть:
- навыками самостоятельного решения проблем творческого и поискового характера;
 - навыками самостоятельного планирования и реализации проекта;
 - навыками публичных выступлений и убеждений.
- основами работы в программном обеспечении для создания виртуальной реальности.

Примерный календарный учебный график вводного модуля

			Кол	ичест	ВО		
№ п/п	Месяц	Название темы	2 Bcero	теория	практика	Форма занятия	Форма контроля
1	Сентябрь	Вводное занятие. Вводный инструктаж	2	1	1	Сообщение новых знаний	Фронтальны й опрос
2	Сентябрь - Октябрь	Знакомство с технологиями виртуальной реальности	10	4	6	Сообщение новых знаний, практика	Фронтальны й опрос
3	Октябрь	Технологии 3D-моделирования: элементы, обзор программного обеспечения	6	2	4	Сообщение новых знаний, практика	Контрольное задание
4	Октябрь- Ноябрь	Технологии 3D- сканирования	4	2	2	Сообщение новых знаний, практика	Контрольное задание
5	Ноябрь	Изготовление съёмки 360. Круговая фото и видео съёмка	10	4	6	Сообщение новых знаний, практика	Контрольное задание
6	Ноябрь	Технология дополненной реальности	10	4	6	Сообщение новых знаний, практика	Презентация проектов
7	Декабрь	Очки дополненной реальности: конструкция и особенности создания приложений под них	10	4	6	Сообщение новых знаний, практика	Презентация проектов
8	Декабрь	Создание AR квеста. Работа в команде над проектом	10	2	8	Сообщение новых знаний, практика	Презентация проектов

		Создание	10	2	8		
		мобильного					
		приложения с					
		дополненной				Сообщение	Презентация
9	Январь	или виртуальной				новых знаний,	проектов
		реальностью по				практика	просктов
		проблематике					
		другого					
		квантума					
		Итого:	72	25	47		

Примерный календарный учебный график углубленного модуля

№ п/п	Месяц	Название темы		Количество часов				Форма занятия	Форма контроля
			всего	теория	практика				
1	Январь	Вводное занятие. Введение в образовательну ю программу углубленного модуля	2	1	1	Сообщение новых знаний	Фронтальный опрос		
2	Январь	Основы работы в Photoshop	10	4	6	Сообщение новых знаний, практика	Контрольное задание		
3	Февраль	Моделирование в Blender. Работа с 3D моделями	10	4	6	Сообщение новых знаний, практика	Контрольное задание		
4	Февраль- Март	Программирован ие в среде Unity	18	8	10	Сообщение новых знаний, практика	Презентация проектов		
5	Март-Май	Разработка в Unity приложения	32	10	22	Сообщение новых знаний, практика	Презентация проектов		
	Ит	гого:	72	27	45				

Условия реализации программы

Материально-техническое обеспечение

Стол компьютерный – 12 шт.

Стул ученический мягкий – 15 шт.

Комплект мебели для хранения (шкаф-стеллаж комбинированный - 1 шт., тумба составная - 1 шт., шкаф комбинированный низкий - 1 шт.)

Рабочее место педагога (стол - 1 шт., тумба приставная - 1 шт., стул - 1 шт.).

Высокопроизводительная рабочая станция – 2 шт.

Графическая станция – 10 шт.

Комплект профильного оборудования (камеры разного назначения-8 шт., шлемы виртуальной реальности- 14шт., стойка для базовых станций-2 шт., контроллер виртуальной реальности-1 шт., система позиционного трекинга-1шт., очки дополненной реальности -8 шт., смартфоны-7 шт., планшеты-2 шт., графические планшеты-3 шт.).

Комплект дополнительного оборудования (фотоаппарат зеркальный-1шт., система позиционного трекинга-2шт., очки дополненной реальности, тип3-1 шт.).

Расходные материалы (картон для макетирования, гафрокартон, скотч двухсторонний, скотч прозрачный, линзы для VR очков, лента эластичная, нож канцелярский, клей-карандаш).

Программное обеспечение:

Офисное программное обеспечение Microsoft Office

Информационное обеспечение

Дополнительная общеобразовательная общеразвивающая программа «Технологии виртуальной и дополненной реальности: моделирование, творчество, визуализация» составлена на основе Методического инструментария тьютора (Тулкит) направления VR/AR (виртуальная

реальность/дополненная реальность), который предназначен для использования наставниками сети детских технопарков «Кванториум».

Формы контроля (аттестации)

Оценка образовательных результатов освоения общеобразовательной программы «Технологии виртуальной и дополненной реальности: моделирование, творчество, визуализация» вводный и углубленный модули осуществляется в форме текущего контроля — определяется качество освоения программы в период обучения (по итогам изучения темы, раздела программы);

промежуточного контроля -определяется качество освоения модуля;

В форме итогового контроля (итоговой аттестации) - степени и уровня освоения дополнительной общеобразовательной (общеразвивающей) программы.

Формы и методы оценивания результатов. Формы текущего контроля выбираются педагогом самостоятельно (наблюдение, опрос, результаты решения кейса, тест, творческая работа, устный анализ творческих заданий, анализ отзывов родителей, других специалистов, устный анализ самостоятельных работ и т. д.).

Основной метод текущего контроля – наблюдение.

Наблюдение — необходимый педагогу метод для осуществления текущей аттестации, применяется педагогом постоянно.

Проверка – поможет обучающимся проводить анализ собственной работы и работы

других обучающихся, поможет педагогу оценить работы, проводится в конце пройденной темы.

Устный анализ самостоятельных работ — дает возможность обучающимся научиться

логически мыслить и уметь высказать собственное суждение, поможет педагогу оценить логическое мышление обучающихся. Проводится в конце пройденной темы.

Onpoc – метод, при котором педагог может оценить теоретически знания обучающихся.

Проводится в конце пройденной темы.

Промежуточная аттестация проводится в форме защиты проекта (представляется готовый продукт или прототип, над которым команда работала в течение конкретного модуля.

Итоговая аттестация в детском технопарке «Кванториум Магадан» проводится в форме защиты проектов.

Задача текущей, промежуточной и итоговой аттестации- определение уровня начальной подготовленности обучающихся, а также уровня их психомоторного развития, она так же преследует цель определения эффективности педагогического воздействия.

Оценочные материалы

Защита проекта на промежуточной и итоговой аттестации обучающихся осуществляется по критериям оценки проектных работ (приложение 2).

Методические материалы

Особенности организации образовательного процесса *очно* (дистанционно).

Методы обучения и воспитания

Методы обучения: словесный, наглядный практический; объяснительно-иллюстративный, репродуктивный, частично-поисковый, исследовательский проблемный; игровой, дискуссионный, проектный, методкейсов.

Методы воспитания: убеждение, поощрение, упражнение, стимулирование, мотивация, пример.

Формы организации образовательного процесса

Индивидуально-групповая - занятия педагог ведет уже не с одним учеником, а с целой группой разновозрастных детей, уровень подготовки которых был различный.

Групповая - работа в группах может обеспечить глубокое, осмысленное обучение. Преимущество групповой работы состоит в том, что в совместной работе можно справиться с более сложным заданием и, конечно же, развить определенные навыки.

Формы организации учебного занятия

- 1. Тренинг.
- 2. Модульное обучение.
- 3. Дистанционное обучение.
- 4. Ценностная ориентировка.
- 5. Кейс-стади.
- 6. Коучинг.
- 7. Ролевые игры.
- 8. Креативные группы.
- 9. Работа в парах.
- 10. Метод рефлексии.
- 11. Обмен опытом.
- 12. Мозговой штурм.
- 13. Тематические обсуждения.
- 14. Презентация.
- 15. Мастер-класс
- 16. Эксперимент.
- 17. Конференция.
- 18. Ярмарка.

Педагогические технологии

Виды педагогических технологий, используемых в рамках образовательной программы:

- технология группового обучения;
- технология коллективного взаимообучения;
- технология развивающего обучения;
- технология дистанционного обучения;
- технология исследовательской деятельности;
- технология проектной деятельности;
- технология игровой деятельности.

Алгоритм учебного занятия

- 1. Организационный момент;
- 2. Объяснение задания: введение в проблему и обсуждение, изучение проблемы, определение тематики;
- 3. Практическая часть занятия;
- 4. Подведение итогов;
- 5. Рефлексия.

Дидактические материалы

Видео- и аудиоматериалы, иллюстрации, таблицы, задания с проблемными вопросами, задания на развитие воображения и творчества, экспериментальные задания, памятки.

Список литературы

Список литературы для педагогов

3D моделирование

- 1. Алекс Дж. Шампандар. Искусственный интеллект в компьютерных играх. Вильямс, 2007. 768 с.
- 2. Вагнер Б. Эффективное программирование на С#. 50 способов улучшения кода. Вильямс, 2017. 224 с.
- 3. Вернон В. Предметно-ориентированное проектирование. Самое основное. Вильямс, 2017. 160 с.
- 4. Гантерот К. Оптимизация программ на C++. Проверенные методы повышения производительности. Вильямс, 2017. 400 с.

Дизайн

- 5. Донован Т. Играй! История видеоигр. Белое яблоко, 2014. 648 с.
- 6. Игровой движок Unity Клеон О. Кради как художник.10 уроков творческого самовыражения. Манн, Иванов и Фербер, 2016. 176 с.
- 7. Клэйтон К. Создание компьютерных игр без программирования. Москва, 2005. 560 с.

Компьютерное зрение

- 8. Ламмерс К. Шейдеры и эффекты в Unity. Книга рецептов. ДМК-Пресс, 2014. 274 с.
- 9. Лидтка Ж., Огилви Т. Думай, как дизайнер. Дизайн-мышление для менеджеров. Манн, Иванов и Фербер, 2014. 240 с.
- 10. Линовес Дж. Виртуальная реальность в Unity. / Пер. с англ. Рагимов Р. Н. М.: ДМК Пресс, 2016. 316 с.
- 11. Миловская О.С. 3DS Max 2016. Дизайн интерьеров и архитектуры. Питер, 2016. 368 с.
- 12.Мэрдок К. Autodesk 3DS Max 2013. Библия пользователя Autodesk 3ds Max 2013 Bible. М.: «Диалектика», 2013. 816 с
- 13. Найсторм Б. Шаблоны игрового программирования. Robert Nystrom, 2014. 354 с.

- 14.Паттон Д. Пользовательские истории. Искусство гибкой разработки ПО. Питер, 2016. 288 с.
- 15.Петелин, А. Ю. 3D-моделирование в SketchUp 2015 от простого к сложному. Самоучитель / А.Ю. Петелин. М.: ДМК Пресс, 2015. 370 с.
- 16.Потапов А.С. Малашин Р.О. Системы компьютерного зрения: Учебнометодическое пособие по лабораторному практикуму. – СПб: НИУ ИТМО, 2012. – 41 с.
- 17.Прахов А.А. Самоучитель Blender 2.7.- СПб.: БХВ-Петербург, 2016.- 400 с.

Программирование

- 18. Разработка игр Страуструп Б. Язык программирования С++. Бином. Лаборатория знаний, 2015 1136 с.
- 19.Страуструп Б. Язык программирования С++. Стандарт С++11. Краткий курс. Бином. Лаборатория знаний, 2017 176 с.
- 20. Тимофеев С.М. 3DS Max 2014. БХВ Петербург, 2014. 512 с
- 21. Торн А. Искусство создания сценариев в Unity. ДМК-Пресс, $2016.-360~{\rm c}.$
- 22. Торн А. Основы анимации в Unity / Алан Торн. М.: ДМК, 2016. 176 c.
- 23. Уильямс Р. Дизайн. Книга для недизайнеров. Питер, 2016. 240 с.
- 24. Усов В. Swift. Основы разработки приложений под iOS и macOS. Питер, 2017. 368с.
- 25.Хокинг Дж. Мультиплатформенная разработка на С#. Питер, 2016.-336 с.
- 26. Чехлов Д. А.Визуализация в Autodesk Maya: Mental Ray Renderer. М.: ДМК Пресс, 2015. 696 с.
- 27. Шапиро Л. Стокман Дж. Компьютерное зрение. Бином. Лаборатория знаний, 2013 752 с.
- 28. Шелл Д. Искусство Геймдизайна (The Art of Game Design). Джесси Шелл, 2008. 435 с.

29.Шонесси А. Как стать дизайнером, не продав душу дьяволу. – Питер, 2015. – 208 с.

Триз

- 30. Альтшуллер, Г.С. Найти идею: Введение в теорию решения изобретательских задач. Петрозаводск: Скандинавия, 2003. 189 с.
- 31. Альтшуллер Г.С., Вёрткин И.М. Как стать гением: Жизненная стратегия творческой личности Минск, «Беларусь», 1994 г., 479 с.

Список литературы для обучающихся и родителей

3D моделирование

- 1. Миловская О.С. 3DS Max 2016. Дизайн интерьеров и архитектуры. Питер, 2016. 368 с.
- 2. Мэрдок K. Autodesk 3DS Max 2013. Библия пользователя Autodesk 3ds Max 2013 Bible. М.: «Диалектика», 2013. 816 с
- 3. Петелин, А. Ю. 3D-моделирование в SketchUp 2015 от простого к сложному. Самоучитель / А.Ю. Петелин. М.: ДМК Пресс, 2015. 370 с.
- 4. Прахов А.А. Самоучитель Blender 2.7.- СПб.: БХВ-Петербург, 2016.- 400 с.
- 5. Тимофеев С.М. 3DS Max 2014. БХВ Петербург, 2014. 512 с
- 6. Чехлов Д. А.Визуализация в Autodesk Maya: Mental Ray Renderer. М.: ДМК Пресс, 2015. 696 с.

Программирование

- 1. Вагнер Б. Эффективное программирование на С#. 50 способов улучшения кода. Вильямс, 2017. 224 с.
- 2. Вернон В. Предметно-ориентированное проектирование. Самое основное. Вильямс, 2017. 160 с.
- 3. Дизайн
- 4. Клеон О. Кради как художник.10 уроков творческого самовыражения. Манн, Иванов и Фербер, 2016. 176 с.

- 5. Лидтка Ж., Огилви Т. Думай, как дизайнер. Дизайн-мышление для менеджеров. Манн, Иванов и Фербер, 2014. 240 с.
- 6. Паттон Д. Пользовательские истории. Искусство гибкой разработки ПО. Питер, 2016. 288 с.
- 7. Страуструп Б. Язык программирования С++. Стандарт С++11. Краткий курс. Бином. Лаборатория знаний, 2017 176 с.
- 8. Уильямс Р. Дизайн. Книга для недизайнеров. Питер, 2016. 240 с.
- 9. Шонесси А. Как стать дизайнером, не продав душу дьяволу. Питер, 2015. 208 с.

Игровой движок Unity

- 1. Ламмерс К. Шейдеры и эффекты в Unity. Книга рецептов. ДМК-Пресс, 2014. 274 с.
- 2. Линовес Дж. Виртуальная реальность в Unity. / Пер. с англ. Рагимов Р. Н. М.: ДМК Пресс, 2016. 316 с.
- 3. Найсторм Б. Шаблоны игрового программирования. Robert Nystrom, 2014. 354 с.
- 4. Торн А. Искусство создания сценариев в Unity. ДМК-Пресс, 2016. 360 с.
- 5. Торн А. Основы анимации в Unity / Алан Торн. М.: ДМК, 2016. 176 с.
- 6. Хокинг Дж. Мультиплатформенная разработка на С#. Питер, 2016. 336 с.

Разработка игр

- 1. Алекс Дж. Шампандар. Искусственный интеллект в компьютерных играх. Вильямс, 2007. 768 с.
- 2. Донован Т. Играй! История видеоигр. Белое яблоко, 2014. 648 с.
- 3. Клэйтон К. Создание компьютерных игр без программирования. Москва, 2005. 560 с.
- 4. Усов В. Swift. Основы разработки приложений под iOS и macOS. Питер, 2017. 368с.

5. Шелл Д. Искусство Геймдизайна (The Art of Game Design). – Джесси Шелл, 2008. - 435 с.

Компьютерное зрение

- 1. Потапов А.С. Малашин Р.О. Системы компьютерного зрения: Учебнометодическое пособие по лабораторному практикуму. СПб: НИУ ИТМО, 2012. 41 с.
- 2. Шапиро Л. Стокман Дж. Компьютерное зрение. Бином. Лаборатория знаний, 2013 752 с.

Триз

- 1. Альтшуллер, Г.С. Найти идею: Введение в теорию решения изобретательских задач. Петрозаводск: Скандинавия, 2003. 189 с.
- 2. Альтшуллер Г.С., Вёрткин И.М. Как стать гением: Жизненная стратегия творческой личности Минск, «Беларусь», 1994 г., 479 с.

Формы контроля

1. Вводное занятие. Вводный инструктаж

Фронтальный опрос:

- Какие устройства используются при работе с VR/AR?
- Что не следует делать при работе с компьютером?
- В чем заключается безопасная работа с техникой?
- Зачем нужна безопасность в работе с техническими устройствами?

2. Знакомство с технологиями виртуальной реальности

Фронтальный опрос. Вопросы для обсуждения:

- Что такое виртуальный мир?
- Показалось ли, что мы были где-то «не здесь»? Почему?
- Какие датчики были использованы?
- Кружилась ли голова?
- Для чего можно использовать виртуальный мир?

3. Технологии 3D-моделирования: элементы, обзор программного обеспечения

Контрольное задание:

Проектирование в 3D редакторе.

Используя возможности выбранного 3D редактора, дети пытаются создать модель шлема виртуальной реальности. Для этого вырезают необходимую часть модели лица, исправляют ошибки сканирования. Далее идет творческая часть, в которой дети, опираясь на заданные параметры (диаметр линз, фокусное расстояние, расстояние между зрачками и пр.), сами разрабатывают конструкции элементов шлема виртуальной реальности (крепление для линз, крепление для смартфона, для фиксации на голове и пр.). Моменты, вызывающие затруднения, выясняют у преподавателя или самостоятельно находят ответы в интернете.

Печать составных частей устройства на 3D принтере и сборка.

После успешной презентации своих работ, приходит время воплотить свою задумку в пластмассе. Обучающиеся решают, как лучше разделить шлем на отдельные элементы, подготавливают детали к печати, печатают составные части, собирают готовое устройство.

Презентация готовых устройств.

После тестов готового шлема виртуальной реальности приходит пора подводить итоги и, возможно, принимать решения о доработке некоторых моделей. Дети демонстрируют готовые модели и их свойства, отвечают на вопросы.

Рефлексия.

После презентации готовых устройств проводится рефлексия: у кого получилось добиться желаемого результата? Какие технические решения были популярнее остальных? Что бы вы хотели изменить в собственной конструкции шлема? Стоила ли проделанная работа полученного результата? В чем преимущества перед существующими решениями? Удается ли погрузиться?

4. Технологии 3D-сканирования

Контрольное задание:

Изучение принципов работы 3D сканера.

Наступает время для знакомства с принципом работы 3D сканера, и освоения навыков работы с ним. Дети внимательно следят за тем, как педагог подключает сканер, настраивает его работу в интерфейсе программного обеспечения, следят за тем, как происходит сканирование. Затем, каждый ребенок повторяет увиденное, комментируя свои действия.

После завершения процесса сканирования, дети садятся за свои рабочие места, и начинают рассматривать результаты работы сканера в любом удобном пакете 3D моделирования. При этом отмечается, что качество сканирования не идеально, модель содержит ошибки. Дети задаются вопросом, почему так происходит, проводят поиск в интернете по возможностям различных сканеров, обсуждают результаты.

5. Изготовление съёмки 360. Круговая фото и видео съёмка

Кейс «Другая точка зрения». В рамках данного кейса дети изучают конструкцию и принципы работы панорамных камер, снять собственное видео 360, смонтировать его и протестировать результат в собранном ранее VR устройстве.

Контрольное задание:

Поиск идеи.

Обсуждение концепции будущего видео, выбор места съемки – детский технопарк «Кванториум», региональный музей, памятник архитектуры, природная достопримечательность и др.

Дети делятся на группы по интересам. Распределяются роли в группе (руководитель проекта, режиссер, сценарист, ведущий, актеры, монтаж и др.). Составление плана реализации.

Дети в группах обсуждают идеи, продумывают план работы, согласовывают план с наставником. Далее следует процесс съемок - длительность варьируется от сложности темы.

Затем под руководством педагога, дети приступают к монтажу.

Презентация готовых видео.

После монтажа и тестирования приходит пора подводить итоги и, возможно, принимать решения о пересъемке некоторых видео. Дети просматривают работы команд, дают обратную связь, оценивают готовые видео по заранее согласованным критериям, отвечают на вопросы. Результат презентуется учащимся и педагогам других направлений. Педагог наблюдает за выступлениями детей и фиксирует уровень сформированности предметных и универсальных навыков в журнале наблюдений.

Рефлексия.

После презентации готовых устройств проводится рефлексия. Стоила ли проделанная работа полученного результата? Финальные версии проектов загружаются на сайт(канал) «Кванториума».

6. Технология дополненной реальности

Кейс «Изобретая невозможное». Учащиеся работают с крупнейшими репозиториями бесплатных трехмерных моделей, минимально адаптируют модели, имеющиеся в свободном доступе, под свои нужды. Работа со структурой интерфейса программы для 3D моделирование (по усмотрению педагога 3Ds Max, Blender 3D, Maya), основными командами. Вводятся понятия «полигональность» и «текстура».

Презентация готовых проектов.

7. Очки дополненной реальности: конструкция и особенности создания приложений под них

Кейс «Будущее на носу». В рамках данного кейса детям предстоит рассмотреть возможности современных AR устройств, протестировать различные существующие приложения и создать собственное полезное приложение для очков дополненной реальности.

Презентация готовых проектов.

8. Создание AR квеста. Работа в команде над проектом

Кейс «Кванторианский квест». Данный кейс посвящен командной проектной работе — созданию увлекательного квеста. Закрепляется умение работать с ПО по созданию AR проектов, продолжается работа с программами по трехмерному моделированию. Проект разрабатывается под любое устройство по желанию участников. Презентация готовых проектов.

9. Создание мобильного приложения с дополненной или виртуальной реальностью по проблематике другого квантума

Кейс «Точка зрения? Теория заговора? Техническое задание!». Кейс обобщающий (при долгой работе над предыдущими кейсами этот кейс сдвигается на следующий модуль и «расширяется» на большее количество часов). К этому времени дети обладают достаточными компетенциями для создания приложений. На старте они увидят несколько крайне полезных примеров (в спасательных операциях, навигации, строительстве и пр.). Затем они отработают навыки создания и тестирования AR приложений по реальному запросу: составят техническое задание для ребят из других

квантумов и сделают полезное для них приложение: «АR инструктор» для хайтек-цеха, опыт по биологии, модель ракеты и т.д. Важным моментом станет презентация готового продукта готовому «клиенту» и оперативное внесение корректировок, при наличии таковых.

Презентация готовых проектов.

Критерии оценки проектных работ (проектное решение, изготовленный продукт, прототип) обучающихся детского технопарка «Кванториум Магадан» по завершению общеобразовательной (общеразвивающей программы дополнительного образования

№	Критерий	Показатель	Балл
1.	Целеполагание	1.Цель отсутствует, задачи не	0
		сформулированы, проблема не	
		обозначена.	
		2.Цель обозначена в общих чертах,	1
		задачи сформулированы не	
		конкретно, проблема не обозначена	
		3.Цель однозначна, задачи	2
		сформулированы конкретно,	
		проблема не актуальна: либо уже	
		решена, либо актуальность не	
		аргументирована	
		4.Цель однозначна, задачи	3
		сформулированы конкретно,	
		проблема обозначена, актуальна;	
		актуальность проблемы	
		аргументирована	
2.	Планирование	1.Отсутствует план работы.	0
	работы, ресурсное	Ресурсное обеспечение проекта не	
	обеспечение	определено. Способы привлечения	
	проекта	ресурсов в проект не проработаны.	
		2. Есть только одно из следующего:	1
		1) План работы, с описанием	
		ключевых этапов и промежуточных	
		результатов, отражающий	
		реальный ход работ;	
		2) Описание использованных	
		ресурсов;	
		3) Способы привлечения ресурсов в	
		проект.	
		3. Есть только два из следующего:	2
		1) План работы, с описанием	
		ключевых этапов и промежуточных	
		результатов, отражающий	
		реальный ход работ;	
		2) Описание использованных	
		ресурсов;	

		3) Способы привлечения ресурсов в	
		проект.	
		4.Есть: подробный план, описание	3
		использованных ресурсов и	
		способов их привлечения для	
		реализации проекта.	
3.	Качество	1.Нет описания достигнутого	0
	результата	результата. Нет подтверждений	
		(фото, видео) полученного	
		результата. Отсутствует программа	
		и методика испытаний. Не	
		приведены полученные в ходе	
		испытаний показатели назначения.	
		2.Дано описание достигнутого	1
		результата. Есть видео и фото-	
		подтверждения работающего	
		образца/макета/модели.	
		Отсутствует программа и методика	
		испытаний. Испытания не	
		проводились.	
		3.Дано подробное описание	2
		достигнутого результата. Есть	
		видео и фото-подтверждения	
		работающего	
		образца/макета/модели. Приведена	
		программа и методика испытаний.	
		Полученные в ходе испытаний	
		показатели назначения не в полной	
		мере соответствуют заявленным.	
		4.Дано подробное описание	3
		достигнутого результата. Есть	_
		видео и фото-подтверждения	
		работающего	
		образца/макета/модели. Приведена	
		программа и методика испытаний.	
		Полученные в ходе испытаний	
		показатели назначения в полной	
		мере соответствуют заявленным.	
4.	Самостоятельность	1. Участник не может описать ход	0
т.	работы и уровень	работы над проектом, нет	U
	командной работы	понимания личного вклада и вклада	
	командной рассты	других членов команды. Низкий	
		уровень осведомлённости в	
		профессиональной области.	
			1
		2.Участник может описать ход	1
		работы над проектом, выделяет	
		личный вклад в проект, но не	

может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект не достаточен для дискуссии 3.Участник может описать ход работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к		
Уровень осведомлённости в профессиональной области, к которой относится проект не достаточен для дискуссии 3.Участник может описать ход работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	может определить вклад каждого	
профессиональной области, к которой относится проект не достаточен для дискуссии 3.Участник может описать ход работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	члена команды.	
которой относится проект не достаточен для дискуссии 3.Участник может описать ход работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	Уровень осведомлённости в	
достаточен для дискуссии 3.Участник может описать ход работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	профессиональной области, к	
3. Участник может описать ход работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4. Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	которой относится проект не	
работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	достаточен для дискуссии	
работы над проектом, выделяет личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	3.Участник может описать ход	2
личный вклад в проект, но не может определить вклад каждого члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в		
члена команды. Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	*	
Уровень осведомлённости в профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход з работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	может определить вклад каждого	
профессиональной области, к которой относится проект достаточен для дискуссии. 4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	члена команды.	
которой относится проект достаточен для дискуссии. 4.Участник может описать ход 3 работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	Уровень осведомлённости в	
достаточен для дискуссии. 4.Участник может описать ход 3 работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	профессиональной области, к	
4.Участник может описать ход работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	которой относится проект	
работы над проектом, выделяет личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	достаточен для дискуссии.	
личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	4.Участник может описать ход	3
личный вклад в проект и вклад каждого члена команды. Уровень осведомлённости в	работы над проектом, выделяет	
Уровень осведомлённости в		
	каждого члена команды.	
профессиональной области, к	Уровень осведомлённости в	
11p = qp = = = = = = = = = = = = = = = = =	профессиональной области, к	
которой относится проект,		
достаточен для дискуссии.	достаточен для дискуссии.	

Для оценки качества проекта подсчитывается среднее значение сумм баллов, выставленных экспертами (не менее 3 экспертов). Результат определяется следующими показателями:

- 4-5 баллов низкое,
- 6-8 баллов среднее,
- 9-12 баллов высокое.